
International Journal of Computer Trends and Technology Volume 69 Issue 7, 24-28, July 2021

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V69I7P103 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Locomotion Control Framework for Snake-like

Robot using Deep Reinforcement Learning

Obe Olumide O1 and Ayogu Thomas O2

1,2Department of Computer Science, The Federal University of Technology, Akure, Nigeria

Received Date: 30 May 2021

Revised Date: 03 July 2021

Accepted Date: 13 July 2021

Abstract - In many industries today around the globe, robots

can be seen carrying out different tasks. These robots have

the capabilities to lift heavy loads, move at a very

unbelievable speed, and execute tasks at a high level of

pinpoint accuracy. But despite their amazing repertoire of

tasks, most robots will find it very difficult to adapt

themselves to new and environments that are unfamiliar to

them. This could be because human environments are so

dynamic and unpredictable and very difficult to be

programmed, but rather must be learned firsthand by the

robot. The desire to build machines that learn behavior

based on the environment presented to them is one of the

goals of Reinforcement Learning (RL). Reinforcement

learning, an aspect of machine learning which is inspired by

behavioral psychology, allows an agent – the learner and

decision-maker, to automatically and autonomously discover

optimal behavior through trial and error interactions with its

environments in an attempt to solve problems. We present in

this paper a control framework for Snake-like robot

locomotion based on Deep Reinforcement Learning.

Keywords - Locomotion, Snake-like robot, Framework,

Reinforcement learning, Controller.

I. INTRODUCTION
A snake-like robot inspired by a biological snake is a

class of hyper-redundant robots that have the potentials for

meeting the ever-increasing need for robotic locomotion in a

challenging environment and performing diverse tasks in a

difficult and challenging environment such as underwater

exploration tasks, industrial pipe inspection, firefighting, etc.

The snake-like robot is made up of serially connected

modules, and these modules can bend in one or more planes

to generate locomotion gaits. The snake-like robot has many

degrees of freedom, and this gives snake-like robots great

potentials to navigate a wide range of environments by

actively changing their overall shape, which surpasses the

locomotion ability of more conventional robots with wheels,

tracked robots, or robots with legs. However, this attributes

of snake-like robot that makes them powerful also make

designing locomotion control model for snake-like robot

very difficult.

Snake-like robot achieves locomotion by changing their

body shape which causes the body to interact with its

environment and by so doing, propelling the robot in some

direction. Common strategies for controlling snake-like robot

locomotion include undulating the joints angle of the robot

according to parameterized sine wave [2], central pattern

generators [5], and follow-the-ladder controllers [1].

Although many successes have been recorded in the area of

developing adaptive and complaint locomotion controllers

for snake-like robot locomotion, it remains short of

replicating the true versatile locomotion ability of biological

snakes. This work, therefore, presents a control framework

for Snake-like robot locomotion based on Deep

Reinforcement Learning.

II. RELATED WORKS

Biological snakes can achieve diverse and different

locomotion gaits by wiggling their bodies on rough or

smooth terrains. To acquire similar locomotion gaits, most

research work on snake-like robot have employed kinematic-

based methods which simplifies the parametric

representations of the snake-like robot trajectories. This

method can be seen in the works of Hirose, 1993 [1], where

the terpenoid curve was used to describe the locomotion

properties of the snake. Main [3] modeled the muscle

characteristics of snakes and developed a curve known as

serpentine curve and used it to describe snake-like robot

locomotion [3]. Tesch et al., 2009 in [6] described snake-like

robot joint angles as a parameterized sinusoidal function.

From the perspective of kinematic-based methods,

researchers have also developed locomotion control models

based on a central pattern generator (CPG) [7, 8]. Even

though these methods have achieved significant results, the

gait efficiency achieved by this method is limited to only

tuning the parameters manually, which makes it time-

consuming and inefficient.

Studies on designing optimized locomotion gaits for

snake-like robots have also been carried out. In [9],

multidimensional friction, known as evolutionary algorithms,

was adopted to design efficient locomotion gait while [10,

11] studied and implemented policy gradient search

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

 Obe Olumide O. & Ayogu Thomas O / IJCTT, 69(7), 24-28, 2021

25

algorithms for optimized locomotion gait. However, these

algorithms are associated with the problem of local optima,

and because of this, the process can be very slow, inefficient,

and manually intensive.

Reinforcement learning has also been explored for

designing effective locomotion gaits for snake-like robots.

Reinforcement learning is an intelligent trial and error

learning method that is particularly useful for tasks in which

it is easy to assess if a goal was reached, but the best ways to

reach it are hard to determine. Reinforcement learning brings

an entirely new solution for free gait generation tasks without

having prior knowledge of the models. At the initial stage,

reinforcement learning was not widely used in the robotics

domain due to the fact that robots often require high

dimensional, continuous states and actions [12]. However,

with recent advancements in reinforcement learning

algorithms, complicated tasks like locomotion gaits

generation [13], dexterous manipulation [14], and

autonomous driving [15] can be handled by robots.

Schuhmann et al. in [16] used RL-based methods Proximal

Policy Optimization (PPO) algorithm to generate locomotion

gait for robots and equally used the same algorithm to learn

energy-efficient gaits. Wu et al. proposed a novel triplet-

average Deep Deterministic Policy Gradient (DDPG)

algorithm while investigating the underestimation problem in

Q-learning methods in order to reduce estimation bias. Their

proposed method improved the performance of many robotic

control tasks [17]. Cully et al. in [4] carried out two

prototype experiments using reinforcement learning methods

and showed in their results that Reinforcement Learning

methods could help robots to recover from damage and

quickly adapt as animals do. In their experiments, a robotic

arm was able to learn to reach the given target with one or

more stuck joints, and a hexapod robot was able to learn how

to walk very fast and straight with broken or missing legs.

III. DESCRIPTION OF SNAKE-LIKE ROBOT MODEL

A case study of a snake-like robot model adapted from

the Active Cord Mechanism (ACM) snake-like robot by

Hirose [1] was used. The snake model is a planner snake-like

robot consisting of n number of links with l lengths and

interconnected by n-1 joints. The kinematics of the snake-

like robot used is defined according to the symbols in Figure

1. The n links have the same mass m and moment of inertia J,

with each link having a mass that is uniformly distributed,

and as such, the link Center of Mass (CM) is located at its

center point. The snake-like robot moves in a horizontal

plane and has n+2 degrees of freedom. The position of the

Center of Mass of the robot is denoted by

 (1)

The absolute angle represented as of link I have expressed

with respect to the global axis with positive

counterclockwise direction. The relative angle between link i

and link i + 1 (i.e., the angle of joint i) is defined as

 (2)

The Center of Mass of the links is subjected to a

Coulomb ground friction force, having anisotropic friction

coefficients and , which describes the Coulomb friction

force in the tangential and normal direction of the links,

respectively. With the snake-like robot, it is common to

assume that , which is also a property found in

biological snakes [1].

The motion equation of the snake-like robot in terms of

the joint angle , absolute angle of the robot head

link , and the Center of Mass position is expressed as

equation (3).

,

 (3)

Where is a transformed control input that

corresponds to the acceleration of the joints angle,

 is the nonlinear function

of the state vector, and the control input, fx, i and fy, i are the

Coulomb friction force components on the link i in the global

x and y direction respectively.

Fig. 1 Kinematics definition of Snake-like Robot model

IV. PROPOSED RL-BASED MOTION FRAMEWORK

A. Reinforcement Learning Setup

To solve a Reinforcement Learning problem, it is critical

to segregate the agent from its environment and define the

actions, states, and rewards. In the proposed RL-based

motion controller (Figure II), the Agent is the entity that

controls the snake-like robot. It implements the learning

algorithm, takes actions, perceives the state, and receives the

 Obe Olumide O. & Ayogu Thomas O / IJCTT, 69(7), 24-28, 2021

26

rewards. The Environment consists of the snake robot, the

target object, and other obstacles. The environment reacts to

the actions taken by the agent.

B. The State (observation) Space

The Reinforcement Learning (RL) Agent receives

information from the environment through the state

(observation) space at each time step. Choosing the right

state space is a very critical task in Reinforcement Learning

as agents require accurate information to be able to learn its

behavior. The state-space used in this work is made up of

images from the vision sensor and the angles of the robot

joints, as well as the target angles that each joint is currently

rotating towards and the current speed of the head module.

The state space is given in Table 1. The vision sensor

has an angle of 90o and a resolution of 32 x 32 pixels. For the

snake-like robot to learn locomotion, it requires the joints

position and the angular joints velocity . The head link

velocity is used to sense the global velocity, which offers

the snake-like robot better movement awareness. For the

snake-like robot to be able to locomote and move forward,

actuated joints are utilized. To control the velocity of the

robot, a target velocity is specified and passed to the

environment, which can be changed dynamically. Therefore,

the state space (observation) size used in this work is 29-

DOF.

Fig. 2 Snake-like Robot Motion Control Model

Table 1. State (observation) Space for the RL-Motion Controller

Parameter Description

Joint angle position

Joint angle velocity

Head module velocity

Actuator torque

Target velocity

C. Action Space

The snake-like robot is on a one-dimensional track,

which is positioned between some obstacles. The goal of the

robot is to move to a set target while learning a snake

locomotion gait. Therefore, the action space is in a vector

[snake robot position, snake robot velocity: moving forward

or stop]. Since the snake-like robot is moving in a curve-like

feature, the position is given by a continuous value [-1.2,

0.6], and the velocity is a bounded continuous value of [-

0.07, 0.07]. Hence, the action space of the RL-based

motion controller corresponds to the nine joints positions of

the snake robot, which linearly translates to a finite

continuous value in the range of [-1.5, 15] to [-90o, 90o].

D. Reward Function

Reward function plays a very vital role in a

reinforcement learning model. It is an immediate response

sent back from the environment to evaluate the last action

taken by the agent. In this work, the behavior that the reward

function should incite in the agent is to move towards a

target object. Therefore, it compares the location of the

snake-like robot before and after a time step. It rewards any

movement towards the right direction and penalizes

movement towards the wrong direction. Figure 2 shows the

schematic representation of the reward function used in this

work.

Let and denote the location of the snake-like robot

before the time step respectively in x and y coordinates,

and the position after the time step in the respective x and

y coordinates as well as and the target coordinates

before the time step respectively in x and y.

To obtain the distance the robot has moved over the

course of a one-time step, the distance between the robot and

the goal before the time step (equation 4) is compared to the

distance between the robot and the goal after the time step

(equation 5). During the time step, the robot moved, whereas

the target position stayed at a constant position and is

updated after calculating the reward. The reward signal,

therefore, is equal to the difference between the distance

before and after the time step (equation 6).

 (4)

 (5)

 (6)

From (6), the agent gets a positive reward for any

movement towards the goal, penalizes movement away from

the target. However, movement away from the goal that

would eventually result in a better position can also yield a

higher overall reward. Because the discount factor is set to

 Obe Olumide O. & Ayogu Thomas O / IJCTT, 69(7), 24-28, 2021

27

0.99, expected future rewards are less important to the

algorithm than immediate rewards but can still strongly

influence its policy.

E. Network Architecture

To map the state space (input) to the action space

(output), MlpPolicy from OpenAI Baselines will be used as

the policy network. MlpPolicy configured as a fully

connected 2-hidden layer neural network with the hidden

layer size of 64 will be used as a non-linear function

approximator to the policy . Both hidden layers have

standard Rectified Linear Units (ReLu), and the final layers

output the joint position commands for the robot. To train the

network, the DDPG algorithm described in the next section

will be used.

F. Training Algorithm

DDPG, a deep reinforcement learning algorithm

proposed by Lillicrap et al. 2016 [18], will be used for

training. Both Q-learning and policy gradient are combined

in Deep Deterministic Policy Gradient frameworks and use

neural networks as a function approximator. Q-learning is

basically a method to learn using Bellman Equation

(equation 7).

 (7)

where = learning rate, = discount factor, a = action, s

= state

DDPG maintains actor and critic networks (Fig. 4). The

actor, which is represented as maps, states actions

where represents the network parameters for the actor-

network. The critic network represented as

outputs the value of the action under the state where

represents network parameters for the critic network. An

experience replay buffer is used by the DDPG framework to

store transitions and to update the model. A target actor-

network and are created by copying the actor and critic

networks respectively so that a consistent temporal

difference backup is provided.

An agent takes action on and then receives a reward

based on the transition) is then

stored in a replay buffer R. N sample transitions are drawn

from R, and expected return is calculated by equation 8, and

the critic network is then updated by minimizing the loss

function between outputs of the target critic network

and the critic network (equation 9).

 (8)

 (9)

The actor-network is updated by using a sampled policy

gradient (equation 10), and the target actor-network and the

target critic network are updated as in Equations 11 and 12.

 (10)

 (11)

 (12)

Where denotes learning rate.

Fig. 3 Actor-Critic Model (DDPG Algorithm)

V. PROPOSED SYSTEM ARCHITECTURE

The implementation and evaluation of this work will be

based on simulations. A robotic simulator V-REP by

Coppelia Robotics will be used. V-REP can be used as a

simulator as well as a means for scene creation, and it

provides different choices of the physics engine to choose

from. A robotic scene in V-REP consists of different objects

that can be controlled individually with the use of embedded

Lua scripts. The script connected to an object is called a child

script. The snake-like robot is controlled partially with

embedded Lua child script in V-REP. In addition to

providing some control directly, the Lua script also performs

message exchange with Reinforcement Learning (RL)

algorithm. The RL algorithm runs in python and controls the

robot via the V-REP RemoteAPI, through which it also

receives the environment states.

Each scene in V-REP has an environment file written in

Python that is needed to control dynamic factors and as well

as serve as an interface between the RL Algorithm and the

software used for simulation. Python was used to implement

all the interfaces and will be registered as the environment in

OpenAI Gym. The gym will serve as an interface and

abstraction layer between the Reinforcement Learning agent

and its simulation environment. The agent will be able to call

methods such as step (action) on a gym environment

regardless of the implementation details of the environment.

 Obe Olumide O. & Ayogu Thomas O / IJCTT, 69(7), 24-28, 2021

28

Fig. 4 Snake-like robot motion control system architecture

VI. CONCLUSION

Developing a locomotion control model for a snake-like

robot remains a difficult and very challenging task. This is

due to the fact that snake-like robots naturally come with

redundant degrees of freedom and have very complicated

interactions with their environments. The essence of this

research work is to develop a locomotion control framework

for snake-like robots based on deep reinforcement learning.

The developed framework will contribute immensely to the

ever-growing quest to build a more sophisticated and

complex model for snake-like robot locomotion in real and

challenging environments. Our future work will be to

implement the framework and evaluate the performance of

the model in a simulation environment and a real snake-like

robot.

REFERENCES
[1] S. Hirose., Biologically inspired robots: snake-like robot locomotors

and manipulators, Oxford University Press, Oxford., 1093 (1993).

[2] H. Ohno and S. Hirose., Design of slim slime robot and its gait of

locomotion. Proceedings 2001 IEEE/RSJ International Conference on

Intelligent Robots and Systems.,(2001) 707-715.

[3] S. Ma., Analysis of snake movement forms for the realization of

snake-like robots. In Proc. IEEE Int. Conf. Robotics and Automation,

Detroit, MIUSA., (1999) 3007–3013.

[4] A. Cully, J. Chune, D. Tarapire, J. B. Mouret (2015). Robots that can

adapt like animals, Nature 521(7553) 503.

[5] A. J. Ijspeert., Central Pattern Generators for locomotion control in

animals and robots: a review. Neural Networks, 21 (2008) 642-649.

[6] M. Tesch, J. Schneider, and H. Choset., Using response surface and

expected improvement to optimize snake robot gait parameters. In

2001 IEE/RSJ International Conference on Intelligent Robots and

Systems., (2011) 1069-1074.

[7] N. M. Nor, S. Ma., Smooth transition for CPG-based body shape

control of a snake-like robot. Bioinspiration & biomimetics 9(1)

(2013) 016003.

[8] Z. Bing, L. Cheng, G. Chen, F. Rohrbein, K. Huang, A. Knoll.,

Towards autonomous locomotion. CPG-based control of smooth 3D

slithering gait transition of a snake-like robot. Bioinspiration and

Biomimetics. 12(3) (2017) 035001.

[9] S. Chernova, M. Veloso., An evolutionary approach to gait learning

for four-legged robots. IEEE/RSJ International Conference on

Intelligent Robots and Systems., 3(2004) 2562-2567.

[10] M. S. Kim, W. Uther., Automatic gait optimization for quadruped

robots. Australian Conference on Robotics and Automation. Citeseer.

(2003) 1-3.

[11] N. Kohl, P. Stone., Machine learning for fast quadrupedal

locomotion. AAAI. 4(2004) 611-616.

[12] J. Kober, J. A. Bagnell, J. Peters., Reinforcement Learning in

Robotics: A survey. International Journal of Robotics Research.

32(11) (2013) 1238 – 1274.

[13] X. B. Peng, G. Berseth, K. Yin, M. Van De Panne., Deeploco:

Dynamic Locomotion Skills using hierarchical deep reinforcement

learning. ACM Transactions on Graphics. 36(4) (2017) 41.

[14] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E.

Todorov, S. Levine., Learning complex dexterous manipulation with

deep reinforcement learning and demonstrations. arXiv Preprint

1709.10087., (2017).

[15] P. Long, T. Final, X. Liao, W. Liu, H. Zhang, J. Pan., Towards

optimally decentralized multi-robot collision avoidance via deep

reinforcement learning. IEEE International Conference on Robotics

and Automation (ICRA)., (2018) 6252-6259.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimor (2017).

Proximal Policy Optimization Algorithms. arXiv: 1707.06347.

[17] D. Wu, X. Dong, J. Shen, S. C. H. Hoi., Reducing estimation bias via

triplet-average deep deterministic policy gradient. IEEE Transactions

on Neural Networks and Learning Systems. (2020) 1-1.

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Zrez, Y. Yassa, D.

Silver, D. Wierstra (2015). Continuous control with deep

reinforcement learning. CoRR abs/1509.02971.

